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Abstract 

A formula, recently discovered by Cyvin, relates the numbers of Kekuld structures of 
unbranched catacondensed benzenoid molecules. It is shown that Cyvin's formula is a 
special case of a much more general result. The determinants occurring in Cyvin's formula 
as well as in our generalized version thereof can be interpreted in terms of correlation 
functions for the choices of pairs of double or pairs of single bonds in the Kekul& structures 
of the respective conjugated system. 

1. Introduct ion 

Some time ago, Cyvin [1] reported an identity for the number of Kekuld 
structures of unbranched catacondensed benzenoid hydrocarbons. This formula was 
then applied [1-5] in the study of the Kekul6 structures of benzenoid and 
coronoid molecules. 

In order to formulate Cyvin's identity, denote by U 0 an unbranched cata- 
condensed benzenoid system [6] possessing k kinks, k _> 2. Label the kinks of U 0 
consecutively by a 1, c~ 2 . . . . .  at  and the terminal hexagons closest to a t and a k by "vl 
and r 2, respectively. Then, U t will denote the fragment obtained by deleting from U o 
the first linear segment, i.e. -r~, a 1 and the hexagons lying between them. Further, U 2 
is the fragment obtained by deleting from U 0 the last linear segment, i.e. a k, ~z and 
the hexagons lying between them. Finally, let U 3 be the fragment obtained by deleting 
from U o both its first ,and its last linear segment. 
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Then, Cyvin's :formula reads [1] 

K { g o }  K{U~} 
K{U2}  K{U3} = - ( - 1 ) k '  (1) 

where K{G} stands for the number of Kekuld structures of G. Formula (1) is illustrated 
by the example below: 

G; ~=4; ,v{ G) = 118 

4% 
Ul; K{U1} = 35 U2; K{U2} = 27 u3; x{c~) = 8 

Indeed, 

118 351 1 - ( - 1 )  4 . 
27 8 

Although the aim of the present work is to provide a proof of Cyvin's identity 
and a far-reaching generalization thereof, we wish to point out its importance in the 
calculation of the number of Kekul6 structures. By means of formula (1), Cyvin was 
able to obtain combinatorial expressions for the K-values of a variety of benzenoid 
(both cata- and pericondensed) and coronoid molecules [1-5] which could hardly be 
deduced without the use of (1). The importance of the Kekul6 structure count in the 
theory of benzenoid and coronoid molecules need not be emphasized here [6]. 

In the present paper, we show that eq. (1) can be considered as a special case 
of a much more general result which holds for the numbers of Kekul6 structures of 
conjugated molecules whose molecular graphs have the form X: G : Y, where the "colon" 
symbol : indicates that the two graphs it separates are to be adjoined (or fused) along 
a single edge. More precisely, we deduce statements about the number of perfect 
matchings of any graph of the type X: G : Y as well as statements which hold for any 
graph. (Recall that if H is a graph, then K{H} is the number of perfect matchings of 
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H. A perfect matching of H is a set of independent, i.e. mutually non-incident edges 
of H, which cover all vertices of H [7].) 

Let G be a graph possessing at least two independent edges (and thus at least 
four vertices). Denote these edges by e and f and the corresponding endpoints by p, q 
and r, s, respectively. 

Let X be another graph with an edge e'. Then, X: G is the graph obtained by identifying 
the edge e" of X with the edge e of G. The graphs G:Y and X : G : Y  are defined 
analogously: 

X:G G:Y X:G:Y 

It is clear that the unbranched catacondensed system U o is of  the form X: G:Y, 
where X and Y are linear polyacene fragments (the first and the last linear segment) 
and G is another unbranched catacondensed benzenoid system. Then, of  course, 
U 1 = G:Y, U 2 = X:G and U 3 = G. Hence, the determinant on the 1.h.s. of (1) is a 
special case of a topological function D(G, X, Y), defined as 

K { X  " G ' Y I  
D ( G , X , Y ) :  K { X ' G }  

K{G" Y}, (2a) 
K{G} 

i.e. 

D ( G , X , Y ) =  K{X  :G : Y } K { G } - K { X  : G } K { G  : Y } .  (2b) 

In the subsequent section, we establish some general properties of  this function. 
Before doing this, however, we wish to emphasize once again that our discussion 
applies to all (molecular) graphs, both cata- and pericondensed benzenoids and 
nonbenzenoids. As a matter of fact, the structures of the graphs G, X and Y are fully 
arbitrary with the only restriction that G must possess two independent edges. 

2. Identities for D(G, X, Y) 

THEOREM 1 

If G, X and Y are graphs with even numbers of vertices, then the function 
D(G, X, Y),. defined via (2), satisfies the relation 
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D ( G , X  Y ) = K { X - e ' } K { Y - f ' } K { G }  K { G - ~ } _ f }  
' { G - f }  K { G  " 

(3) 

P r o o f  

Let A and B be graphs with an even number of vertices. Let a be an edge of 
A and b be an edge of B. Denote by A : B the graph obtained by identifying the edges 
a and b. It has been determined elsewhere [8,9] that 

K { A : B }  = K { A } K { B }  - K{A  - a } X { B  - b}. (4) 

Applying (4) to X : G ,  G : Y  and X : G : Y ,  we obtain in a straightforward manner: 

K { X : G }  = K { X } K { G }  - K{X  - e ' } K { G  - e}, 

K { G : Y }  = K { Y } K ( G }  - K { Y -  f ' } K { G  - f } ,  

K { X : G : Y }  = K { X } K { Y } K { G }  - K { X  - e ' } K { Y } K { G  - e} 

- K { Y } K { Y - f ' } K { G  - f }  + K{ X  - e ' } K { Y - f ' } K { G -  e - f } .  

Substituting these three equalities into the r.h.s, of (3), we arrive at the r.h.s, of (2) 
after appropriate algebraic manipulations. [21 

In a trivial manner, theorem 1 holds also if 

(i) either X or Y have odd numbers of  vertices, or 

(ii) G has an odd number of vertices and both X and Y have even numbers 
of vertices. 

Then, namely, both sides of (3) are equal to zero due to the fact that graphs 
with odd numbers of vertices cannot have perfect matchings. If, on the other hand, 

(iii) both X and Y have odd numbers of vertices, 

then relation (3) is not obeyed. This is because (4) is not applicable in such a case. 

THEOREM 2 

Let G be a graph and e and f its two independent edges. The endpoints of e 
are the vertices p and q; the endpoints o f f  are the vertices r and s. Then, 

K { G - f }  K { G  = K { G - r - s }  K { G - p  q - r - s } "  (5) 
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Proof  

If  G does not possess perfect matchings, then all K-numbers appearing in (5) 
are equal to zero and thus (5) is obeyed in a trivial manner. 

If K{G}  , O, then it is easy to verify (5) by direct calculation, using the facts 
that 

K{G} --- K{G - e} + K{G - p - q} = K{G - f }  + K{G - r -  s}, 

K { G -  e - f }  - K { G - p -  q -  r - s }  = K { G - e }  - K { G - r - s }  

= X { G - f }  - X { G - p -  q } .  

(6a) 

(6b) 
D 

COROLLARY 2.1 

IK{G} K { G - p - q }  ] 
D ( G , X , Y ) = K { X - e ' } K { Y - f ' }  K { G - r - s }  K { G - p - q - r - s } "  

It is possible to give an alternative interpretation and proof of theorem 2. 
Let G be a graph possessing perfect matchings and let e and f be edges of G. 

Define a variable quantity e, such that e = 1 if e belongs to the perfect matching and 
e = 0 if e does not belong to the perfect matching. Let another variable ~o be associated 
with the edge f i n  a fully analogous manner: ~o = 1 i f fbe longs  to the perfect matching 
and (p = 0 otherwise. The expectation values of e and ~o are denoted by (e) and (~o), 
respectively. Evidently, (e) = K{G - p  - q} /K{G},  (q)) = K{G - r -  s} /K{G}.  These 
expectation values measure the probability that e and f belong to a perfect matching 
of G. 

The probability that e and f simultaneously belong to a perfect matching of  G 
is given by (e~o) = K{G - p  - q - r - s} /K{G}.  The respective correlation function 
is then 

F ( e , f )  = ( ( e -  (e))(~o- (9))). 

It follows immediately that 

F ( e , f )  = (e~o) - (e) (~o), 

and therefore 

K { G }  
K L _  , K { G -  F(e , f )  

r - s }  
KlC - p - q }  s} 
K { G - p - q - r -  " 
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Clearly, F ( e , f )  measures the influence which the presence of tile edge e in a perfect 
matching of  G has on the presence of the edge f in the same perfect matching (or 
vice versa). 

Denote by F(e,f) the correlation function measuring the influence of  the 
absence of  the edge e from a perfect matching of G on the absence of the e d g e f  from 
the same perfect matching. Then, 

F(e,f) = ( (?-  (~))(~- (b))). 

On the other hand, <e) = K{G-  e}/K{G}, (~) = K{G-f} /K{G} and (e~o> 
= K{G - e -  f}/K{G}. From this, it follows that 

F(e,f)= K{G}_2]K{G} K { G - e }  [ 
k{G-f} K{G-e- f }"  

Thence, theorem 2 is seen to be equivalent to 

F (e , f )  : F(e , f ) .  (7) 

This fact, on the other hand, is readily proved using the substitution g = 1 - g and 
q~ = 1 - ¢p. 

Relation (7) may easily be generalized. For three disjoint edges e,f, g with 
associated variables e, ~0, % one readily has 

<(e- <e>)(~o- < ~o>) ( r -  <r>)> : -<(~-  <e>) (~o- < ~o>)(z- <~'>)>. 

This, of course, relates various Kekuld structure counts. Further generalization to an 
arbitrary number of disjoint edges is possible, as shown in appendix 1. A third 
possible direction in which the present results can be extended is put forward in 
appendix 2. 

3. Cyvin 's  formula follows from theorem 1 

In order to deduce Cyvin's formula, we first point out two special cases of  
theorem 1. 

COROLLARY 1.1 

Let G in formula (3) be the linear polyacene with h hexagons: 

e ZX2X f 
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Then, K { G }  = h + 1, K { G -  e} = K { G - f }  = h, K { G -  e - f }  = h -  1 and the r.h.s. 
of  (3) is equal to - 1 ,  irrespective of  the value of the parameter h. 

COROLLARY 1.2 

Let G in formula (3) be the phene with h~ + h 2 - 1 hexagons: 

f 

hi 

Then, K { G }  = h 1 h 2 + 1, K ( G  - e) = (h I - 1)h 2 + 1, K ( G  - f )  = hl (h 2 - 1) + 1, 
K { G -  e - f }  = (h 1 - 1)(h 2 -  1) + 1 and the r.h.s, of (3) is equal to + 1, irrespective 
of  the values of  the parameters h~ and h 2. 

Every unbranched catacondensed molecular graph U o with at least two kinks 
/ 

can be presented in the form L i '"  , • Uo.@ where U o is another unbranched 
catacondensed system and L~, L denote linear polyacene fragments with i and j 
hexagons, i , j  >_ 2: 

i J 
Uo 

• P Applying theorem 1 to L i . U o ' L ,  we obtain 

I 
K { U 2 }  K { U 3  = K { g l }  / ' ( { U ;  ' (8) 

t P 

because K { L  i - e} = K { L - f }  = 1. In eq. (8), the symbols U], U 2, U 3 are related 
to U 0 in the same manner  as U I, U 2, U 3 are related to U o. 

Thus, the determinant on the 1.h.s. o f  (1) is equal to an analogous determinant 
t t for a smaller unbranched catacondensed system U o. It is easy to see that U o has two 

kinks less than U o. 
We now have to distinguish between three cases. 
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CASE 1 
• p 

U o has no kinks, i.e. U o is a linear polyacene. Then k, the number of kinks in 
U o, is even. By corollary 1.1, the r.h.s, of (8) is then equal to - 1 .  Therefore, 
identity (1) holds. 

CASE 2 

• / 

U 0 has one kink, i.e. U o is a phene. Then k is an odd number. By corollary 1.2, 
the r.h.s, of (8) is now equal to + 1. Again, identity (1) holds. 

CASE 3 

I U o has more than one kink. Then the above described reduction procedure 
(which decreases the number of kinks by two) has to be repeated until we obtain an 
unbranched catacondensed system with less than two kinks. Then, either case 1 or 
case 2 will be applicable. 

This completes the deduction of Cyvin's lormula (1) from theorem 1. 

Appendix 1 

Theorem 1 is, in fact, a special case of  a somewhat more general formula. 
In theorem 1, it was assumed that the graph G has two independent edges e 

a n d f  Suppose now that G possesses 2n independent edges e 1 , e 2 . . . . .  e , f ~  ' f2 . . . . .  f ," 
(Note that the graph G may possess other independent edges as well,) 

Let XI , X 2 . . . . .  Xn' 1/1, Yz . . . . .  Y be 2n distinct graphs, each possessing at 
least one edge but otherwise being arbitrary. Let e'i and f f  denote an edge of X i and 
Y., respectively, i = 1 . . . . .  n. 

Denote by X and y t h e  n-element sets {X~ ,X  z . . . . .  Xn} and {Y1, Y2 . . . . .  Y } '  
respectively. Denote by X. and 9,, i = 1,2 . . . . .  2 ", the subsets of X and 9; 
respectively, and label them so that ~ e X~ ¢=, E ~ ~'. It is convenient to choose 
X~ = X a n d  ~ =  y 

The graph X,:G: ~ is constructed in the lollowing way. If X k ~ X~, then the 
edge e£ of X, is identified with the edge e, of G. If Y, ~ 9f ,  then the edge 3'~ of Y, 
is identified with the edge fk of  G. This procedure is repeated for all elements of  X. 
and 7" In the special case when both X and y are empty sets, X.: G: ~ = G. 

Denote by E and F the n-element sets (e l, e 2 . . . . .  e }  and {f~,f2 . . . . .  fn}, 
respectively. Let ~ and ~ ,  i = 1,2 . . . . .  2 ~, be the subsdts of  E and F, respectively, 
and let them be labelled so that e i e E, ¢=~ X~ ~ X. ' )'i e }'- ¢:~ II/~ ~" With this 
convention, we have E 1 = ~ = O. Then the following identity is obeyed for all 
values of  n: 

det I I K { X i  :G " 9~}11 
n 

= I I  K { x t  - e'k } K { Y k  - f ~  } det IIK{G - Ei - ~}ll- 
k = l  

(9) 
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Note that the matrices which appear in (9) are of order 2 n. Theorem 1 is just the 
special case of (9) for n = 1. 

Formula (9) can be deduced in an analogous manner as theorem 1, namely by 
a repeated application of eq. (4). The actual procedure is quite lengthy and will not 
be presented here. 

Also, theorem 2 can be generalized. In order to do this, denote by E: and ,~. 
the sets of vertices of G which are the endpoints of the elements of E i and 
F i , respectively. Then the following relation holds: 

Oct IIK{G - % - 3 }  II = det II K{G - E * -  ~ }  II i 
(lO) 

Evidently, for n = 1, eq. (10) reduces to (5). 
The proof of (10) is elementary: The matrix II K { G  - E i - ~} II is transformed 

into the matrix II K { G  - E*-i ~} II by means of operations which maintain the value 
of the determinant (subtraction of one row from another, etc.), and by appropriate 
application of relations of the type (6). 

Append ix  2 

From the discussion in appendix 1, it is clear that both the identities (5) and 
(10) are stipulated by the existence of a recursion relation of the type (6). This means 
that for the validity of relations of the type (5) or (10), it is sufficient that a certain 
topological function T { G }  conforms to recurrence relations analogous to (6), viz., 

T { G }  = T { G  - e}  + T { G  - p - q }  = T { G  - f }  + T { G  - r -  s}, 

T { G  - e - f }  - T { G  - p - q - r - s}  = T { G  - e} - T { G  - r - s }  

= T { G - f }  - T { G  - p  - q } .  

One such topological function is the matching polynomial [10], if it is defined as [11] 

[n/21 

C~+{G}= ~ m ( G , k ) x  "-2~:  

k = 0  

where m ( G ,  k )  stands for the number  of k-matchings of  the graph G. Therefore, 
formulas (5) and (10) remain valid if each symbol K is interchanged by a symbol a +. 
On the other hand, after such a substitution, formulas (1) and (3) are no longer true. 
This is because there exists no relation for the matching polynomial,  analogous to (4), 
i.e. in general [12] 

a + { A ' B }  ;~ a + { A } a + { B } - a + { A - a } a + { B - b } .  
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Recall that forx  = 0, a+{G} is equal to K{G}. Note also that forx  = 1, a+{G} 
is the Hosoya index [13], i.e. the total number of  matchings of the graph G. Hence, 
results analogous to (5) and (10) hold for the Hosoya index as well. 

As a final remark, we mention that formulas (5) and (10) remain valid also if 
the symbols K are interchanged into c~-, where cx-{G} is the usual form of  the 
matching polynomial [10, 11]: 

In/2] 
o~-{G} = ~ ( -1)km(G,k)x  ~-2~. 

k=0 
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